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Thermal Luminescence Pattern Recognition 
 
 
 

 
This artificial Neural Network Computing (NNC) system 
detects surface chemical contamination via thermal 
luminescence (TL) spectroscopy. Features for radiometric 
detection of the contaminant compound (analyte), or group 
of compounds, are absorption and emission moieties 
carried in a thermal energy release by the analyte viz a viz 
energetic beam stimulation. An interferometer collects and 
records these stimulated emissions through digitized sets of 
interferograms. These data are subsequently Fourier 
transformed into infrared spectra and subtracted in 
contiguous spectral sets. The difference spectra (∆S) are 
normalized, baseline-corrected, filtered for spurious 
electronic noise, and checked for absorption band polarity. 
The preprocessed ∆S is then submitted to the neural 
network input layer for positive or negative identification of 
the analyte. 
 
Three successful TL neural network pattern recognition 
filters were built around an architecture design consisting of: 
(1) an input layer of 350 neurons, one neuron per ∆S 
spectral scan spanning 700 ≤ ν ≤ 1400 wavenumbers with 
resolution ∆ν = 2; (2) two hidden layers in 256 and 128 
neuron groups, respectively, providing good network 
training convergence; and (3) an output layer of one neuron 
per analyte -- each analyte defined by a singular vector in 
the network training data set. The network is trained with 
infrared absorption spectra of chemical warfare agent and 
simulant compounds (or their first derivative spectra). These 

data sets are scaled then transformed into binary or decimal array formats for network training by a 
backward-error-propagation (BEP) algorithm with gradient descent paradigm. The neural network 
transfer function gain and learning rates are adjusted on occasion per training session so that a global 
minimum in final epoch training is attained.  A weight matrix is generated through training of the 
network over many (thousands) of epochs. The final weight matrix is also referred to as the chemical 
detection filter, and can be transferred to eight interconnected INTEL 80170NX Electronically 
Trainable Analog Neural Network (ETANN) chips housed and interconnected on a mother circuit 
board. These neural network pattern recognition systems are integrated into a mobile prototype 
thermal luminescence field sensor (TLS) for the in situ spectral discrimination of heated organic liquid 
layers on the ground and evaporated vapor caused by beam irradiation. 



 

 

Mueller Matrix Pattern Recognition 
 
Artificial neural network systems were built for detecting chemical and biological material (CBM) by 
pattern recognition of their polarized light scattering signatures. Backward-error propagation and 
adaptive gradient descent methods perform network training. Data measured via a differential-
absorption Mueller matrix sensor (DIAMMS) comprise domains that uniquely represent the CBM 
material in backscattering of pulsating and polarization (phase) modulating wavelength-paired infrared 
laser beams. These domains are configured from those differential Mueller elements that abruptly 
change as the laser beam switches on and off an IR absorption band of the CBM. They are generally 
a minor subset of the full 16-element Mueller matrix field, per pair of irradiating CO2 laser beams.  

 
The  figure on the left illustrates domains in Mueller matrix 
space for stereoisomers of tartaric acid, i.e., differential 
element data ∆Mij = Mij(λr, α) - Mij(λo, α), where ij is {21, 31, 
13, 43}, λr and λo are resonance and reference (non 
resonance) laser beam wavelengths, respectively, and α is 
backscattering angle. These experimental values of ∆Mij  are 
selected from the complete field of 15 normalized elements of 
the Mueller matrix that are statistically disjoint. They are 
disjoint in the sense that there is no overlap between sets 
from their average value ± one standard (SD) deviation; Mij(λr, 
α) ∩ Mij(λo, α) = ∅, from a range of beam orientations α = 
90.000 ± 20.000 in 0.010 increments (i.e., 4000 measured 
elements per set).  
 
The neural network architecture designed for the DIAMMS is 
comprised of an input layer of 15 nodes comprising ∆Mij 
elements (e.g., see the above figure) and correlation 
coefficient between {Mij(α, λr)} and {Mij(α, λ0)}, a fully 
connected hidden-layer with 200 nodes, and an output layer 
of 4 nodes where each CBM is assigned a unique binary 4-
vector. The network weight matrix, a final product of network 

training and learning, associates the network output 4-vector to chemical/biological identity. A 
backward-error propagation algorithm with gradient descent paradigm is used in the network 
training/learning phase, as is a genetic algorithm that measures the contribution each input variable 
makes in developing the network weight matrix. (Those input variables contributing little to the weight 
matrix could be disconnected from the network architecture, thus simplifying architecture structure 
without degrading network performance.)  A successful mapping of incoming sensor data by the 
trained network weight matrix onto a CBM’s Mueller matrix space will trigger a detection alarm event. 
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